I SIMPOSIO GETHI

17 DE NOVIEMBRE DE 2015

SEDE: HOSPITAL UNIVERSITARIO LA PAZ · AULA JASO · MADRID

Neoplasias digestivas infrecuentes

Dra. Paula Cerdà Instituto Oncológico Teknon Grupo Quirón-salud

	Diagnostic terms and definitions	8	Endocrine tumours B-cell lymphoma	137
			Mesenchymal tumours	142
1	Tumours of the oesophagus	9	Thousand turnous	
	WHO and TNM classifications	10	7 Tumours of the anal canal	145
	Squamous cell carcinoma	11		
	Adenocarcinoma	20	WHO and TNM classifications	146
	Endocrine tumours	26	Tumours of the anal canal	147
	Lymphoma	27		
	Mesenchymal tumours	28	8 Tumours of the liver and	
	Secondary tumours and melanoma	30	intrahepatic bile ducts	157
			WHO and TNM classifications	158
2	Tumours of the oesophagogastric junction	31	Hepatocellular carcinoma	159
	Adenocarcinoma	32	Intrahepatic cholangiocarcinoma	173
	7 doi 10 da on 10 ma	-	Combined hepatocellular and cholangiocarginoma	
			Bile duct cystadenoma and cystadenocarcinoma	182
3	Tumours of the stomach	37	Hepatoblastoma	184
	WHO and TNM classifications	38	Lymphoma	190
	Carcinoma	39	Mesenchymal tumours	191
	Endocrine tumours	53	Secondary tumours	199
	Lymphoma	57		
	Mesenchymal tumours	62	9 Tumours of the gallbladder and	
	Secondary tumours	66	extrahepatic bile ducts	203
			WHO and TNM classifications	204
4	Tumours of the small intestine	69	Carcinoma	204
	WHO and TNM classifications	70	Endocrine tumours	214
	Carcinoma	71	Neural and mesenchymal tumours	216
	Peutz-Jeghers syndrome	74	Lymphoma	217
	Endocrine tumours	77	Secondary tumours and melanoma	217
	B-cell lymphoma	83		
	T-cell lymphoma	87	10 Tumours of the exocrine pancreas	219
	Mesenchymal tumours	90	•	
	Secondary tumours	91	WHO and TNM classifications	220
			Ductal adenocarcinoma	221
5	Tumours of the appendix	93	Serous cystic neoplasms Mucinous cystic neoplasms	234
	WHO and TNM classifications	94	Intraductal papillary-mucinous neoplasm	237
	Adenocarcinoma	95	Acinar cell carcinoma	241
	Endocrine tumours	99	Pancreatoblastoma	244
	Miscellaneous tumours	102	Solid-pseudopapillary neoplasm	246
			Miscellaneous carcinomas	249
_	Turnayura of the colon and recture	100	Mesenchymal tumours	249
ь	Tumours of the colon and rectum	103	Lymphoma	250
	WHO and TNM classifications	104	Secondary tumours	250
	Carcinoma	105		
	Familial adenomatous polyposis	120	Contributors	253
	Hereditary nonpolyposis colorectal cancer	126	Source of charts and photographs	261
	Juvenile polyposis Cowden syndrome	130 132	References	265
	Hyperplastic polyposis	135	Subject index	307
	hyperplastic polyposis	133	Subject muex	307

Tumours of the small bowell

2 % GI cancer

- 40% ADC (> 50% duodenum)
- 40% TNE (ileum)
- 15% GIST
- < 5% lymphoma</p>

SEER (1973 – 1987): age-adjusted incidence rate for SBA 0.4 per 100,000 per year.

NCDB: 65 y, female.

RISK FACTORS

- Smoking, alcohol, refined sugars, red meats, canned and smoked.
- CHRONIC INFLAMMATION :
 - Crohn's disease (RR increased from 40 to 100 times). 70 % ILEUM
 - Celiac disease
- Familial adenomatous polyposis (50-300)
- Nonpolyposis colorectal cancer (> 100)
- Peutz- Jeghers
- Ileostomies (patients with UC or FAP) / ileal conducts or reservoirs .
- Meckel's diverticulum and intestinal duplication.
- The high incidence in the duodenum can suggests the possibility that bile and pancreatic secretions may be precursors

Small Bowell ADC

- 33% poorly differentiated
- CK20 + (47-67%) CK7 + (34-100%)
- CEA. CA 19-9 (more frequent in ampullary carcinomas)
- Similar molecular alterations:
 - 18q loss
 - p53 loss. Park et al. Overexpression of p53 in de novo carcinomas was associated with a worse prognosis.
 - KRAS; Younes et al. K-ras mutations at codon 12 in (33%). Duodenum.
- MSI (20%)
- Methylated phenotype (27%)
- Adenoma- Carcinoma sequence (CCR). The lack of APC mutations and infrequency of small bowel adenomas may suggest a difference in early initiation phase of carcinogenesis.
- A study comparing DNA copy number of SBA with colon or gastric proved to be more similar to the colon.

Treatment and prognosis

- Stage presentation: 32% IV; 27% III; 30% II, 10% I
- Bad prognosis
 - > 75 years old.
 - R1 ressection
 - Poor differentiation
 - Male gender
 - Duodenum
- Complete ressections R0 with locoregional limph node resection is mandatory
- For cases with 8 or more limph nodes are assessed the improvement in 5-year cancer specific survival is 65 80% for stage I; 55 to 66% for stage II; 40 45% for stage III
- Preoperative treatment can be considered.

Adjuvant therapy

Based on the extrapolation of data from CRC.

Small retrospective studies have not

Overman MJ 2010

- Single-centre, retros and 2008, 30 (56%)
- In multivariate analy p = 0.05, but not in
- Patients with a high r
 ≥10%), adjuvant therap,

BALLAD study:

An open-label, randomised, controlled, multi-centre, global trial with DFS as the primary end point.

- Drug: observation alone
- Drug: LV5FU2
- Drug: FOLFOX

Duke University retrospective study compa. neoadjuvant or adjuvant CRT: 5 year OS 53% vs.

Use of adjuvant chemotherapy (National Cancer Database): 8% in 1985; 22.2% in 2005.

The neoadjuvant CRT has proven safe and get response so is using in some cases on duodenum ADC

190

27,

stasis]

y plus

TABLE 1. Studies of Systemic Chemotherapy for Advanced Small Bowel Adenocarcinoma

Author	Year	Study	Tx Line	N	Chemotherapy	RR (%)	Median OS (m)
McWilliams ²¹	2012	Phase II (NCCTG)	1st	28	Capecitabine + oxaliplatin + irinotecan	42	13
Xiang ²²	2012	Phase II (China)	1st	33	FOLFOX	49	15.2
Overman ²³	2008	Phase II (MDACC)	1st	30	CAPOX	50	20.4
Gibson ²⁶	2005	Phase II (ECOG)	1st	38	FAM	18	8
Tsushima ²⁷	2012	Retrospective	1st	60	Fluoropyrimidine monotherapy	20	13.9
				22	FOLFOX	42	22.2
				11	Fluoropyrimidine + irinotecan	25	9.4
Zhang ²⁸	2011	Retrospective	1st	28	FOLFOX/CAPOX	32	14.2
Koo ²⁹	2011	Retrospective	1st	40	Fluoropyrimidine based	11	11.8
Zaanan ³⁰	2010	Retrospective	1st	48	FOLFOX	34	17.8
				13	5-FU + cisplatin	31	9.3
				11	FOLFIRI	9	10.6
Zaanan ²⁴	2010	Retrospective	2nd	28	FOLFIRI	20	10.5
Overman ³¹	2008	Retrospective	1st	29	5-FU + platinum	41	14.8
				51	Various agents	16	12

Abbreviations: 5-FU, 5-fluorouracil; CAPOX, capecitabine and oxaliplatin; ECOG, Eastern Cooperative Group; FAM, 5-FU, doxorubicin, mitomycin C; FOLFIRI, leucovorin, 5-FU, and irinotecan; FOLFOX, 5-FU and oxaliplatin; m, months; MDACC, MD Anderson Cancer Center; N, number of patients; NCCTG, North Central Cancer Treatment Group; OS, overall survival; RR, response rate; Tx, treatment.

TABLE 2. Current Clinical Trials for Advanced Small Bowel Adenocarcinoma

			Tx		
Agent	Phase	Tumor Type	Line	N	Identifier
CAPOX + bevacizumab	II	SBA + ampullary	1st	30	NCT00354887
Capecitabine/oxaliplatin/irinotecan*	II	SBA	1st	33	NCT00433550
CAPOX + panitumumab (KRAS wild-type only)	II	SBA + ampullary	1st	20	NCT01202409
GEMOX + erlotinib	lb	Duodenal + ampullary	1st	22	NCT00987766
Nab-paclitaxel	II	SBA	≥ 2nd	10	NCT01730586

Abbreviations: CAPOX, capecitabine and oxaliplatin; GEMOX, gemcitabine and oxaliplatin; N, number of patients; SBA, small bowel adenocarcinoma; Tx, treatment. *Chemotherapy dosing determined based upon UGT1A1 genotype.

Key points

- 1. For locoregional disease adequate lymph node assessment, strongly correlates with improved survival.
- 2. The role of adjuvant therapy for small bowel adenocarcinoma has not been determined but the there is an extensive use
- The combination of a fluoropyrimidine and oxaliplatin represent the most appropriate frontline systemic chemotherapy.
- 4. The role of biologic agents for this cancer are unknown, although a number of ongoing clinical trials are exploring this question.

WHO histological classification of tumours of the appendix¹

Epithelial tumours	
Adenoma	8140/0 ²
Tubular	8211/0
Villous	8261/0
Tubulovillous	8263/0
Serrated	8213/0
Carcinoma	
Adenocarcinoma	8140/3
Mucinous adenocarcinoma	8480/3
Signet-ring cell carcinoma	8490/3
Small cell carcinoma	8041/3
Undifferentiated carcinoma	8020/3
Carcinoid (well differentiated endocrine neoplasm)	8240/3
EC-cell, serotonin-producing neoplasm	8241/3
L-cell, glucagon-like peptide	
and PP/PYY producing tumour	
Others	
Tubular carcinoid	8245/1
Goblet cell carcinoid (mucinous carcinoid)	8243/3
Mixed carcinoid-adenocarcinoma	8244/3
Others	

Represents 0.5% of intestine neoplasm >50% TNE, **10-20% ADC**.

ADC: male gender, 50-60 years old No MSI No p53 expression Similar KRAS mutation.

¹ This classification is modified from the previous WHO histological classification of tur endocrine neoplasms, it is based on the recent WHO classification (1784) but has been

² Morphology code of the International Classification of Diseases for Oncology (ICD-0) (0 for benign tumours, /3 for malignant tumours, and /1 for unspecified, borderline or un

Pseudomixoma peritonei (PMP)

- Appendix primary mucinous tumor
- 1-2 cases per million habitants / year
- Women (3: 1). 50-60 years old
- Obstruction or perforation pelvic and abdominal dissemination -> inflammatory and fibrotic reaction -- > IQ, obstruction...
- " Jelly Belly "
- Low grade ADP 78% (adenomucinosis peritoneal disseminated). 5 year-OS: 63 %
- High grade CPM (mucinous peritoneal carcinomatosis) 5 year- OS 23 %
- KRAS mutation 57.8 % (more common in codon 12 and associated with mucin production)
- p53 sobrexpression 44.3 % (most common CPM, worse OS)
- EGFR 24%, BRAF 8% PIK3CA 19%
- APC, CTNBB1, AXIN2, TP53

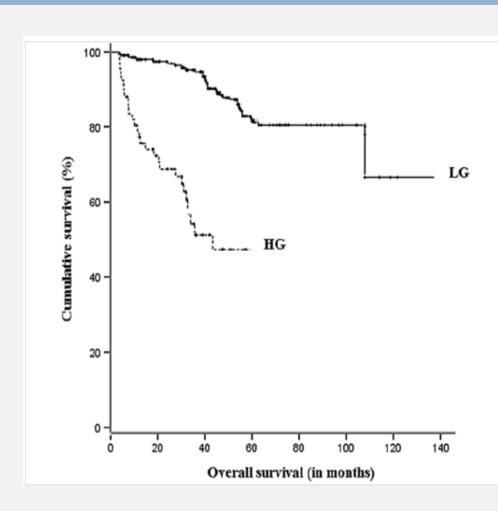
Cytoreductive surgery + CHTiP (Sugarbaker)

5- year OS with complete cytoreduction:

LG 84%

HG 48%

CHTiP:


- Mitomycin-C + 5-FU
- CDDP
- +/- adjuvant therapy

HIPEC (post operative residual disease < 2.5mm)

Meta-analysis (15 studies, 1624 p, HIPEC, QTIP)

- 5 year OS 79.5%
- 10 year OS 55.9%

Retrospetives series with only surgery 5-year OS 50%

Autor	País	Año	n	QTIP + HIPEC	Alto grado	Morbilidad	Mortalidad	R0/1	S3a	S5a	S10a
Sugarbaker PH y cols. (26)	EEUU	1999	385	MMC + 5-FU	41,8	27	2,7	64,9	74	63	-
Loungnarath R y cols. (27)	Canadá	2005	27	ммс	33	44	o	40	78	52	-
Güner Z y cols. (28)	Alemania	2005	28	CDDP, MMC, 5-FU	-	36	7	39,2	-	75	-
Miner TJ y cols. (29)	EEUU	2005	97	ммс	48	16	4	55	-	-	21
Stewart JH y cols. (30)	EEUU	2006	110	ммс	28	38	4	43,6	59	53	-
Smeenk RM y cols. (31)	Holanda	2007	103	ммс	6,7	54	2,9	89	70,9	59,5	-
Baratti D y cols. (32)	Italia	2008	104	MMC + CDDP	25	19	1	85,5	-	78	-
Chua TC y cols. (33)	Australia	2009	106	MMC + 5-FU	10,3	49	3	87,2	-	75	-
Vaira M y cols. (34)	Italia	2009	60	CDDP + MMC	-	45	o	100	-	94	86
Elias D y cols. (35)	Francia, Bélgica, Canadá, Suiza	2010	301	Oxaliplatin o, MMC, 5-FU	19,6	40	4,4	85	84,8	72,6	-
Arjona- Sánchez A y cols. (18)	España	2011	30	MMC, paclitaxel	46,6	30	3,3	93,3	-	67	-
Youssef H y cols. (36)	Gran Bretaña	2011	456	MMC + 5-FU	-	-	1.6	66	-	69	57
Sørensen O y cols. (37)	Noruega	2012	93	MMC + 5-FU	22,5	23,6	2,1	-	-	79	69
Chua TC y cols. (17)	Interna- cional	2012	2.29 8	MMC, 5-FU, oxaliplatino	30,4	24	2	82,8	80	74	63

Key points

1. Local invasion

2. CHTiP and HIPEC have shown better control of the disease and PFS but not OS.

3. The optimal surgery is what will determine the prognosis.

Anal Canal Carcinoma

- 1.5% of all digestive system malignancies in the United States.
- Incidence: 6,230 individuals in the USA in 2012, resulting in 780 annual deaths.
- Squamous cell carcinoma (SCCA) 85% of all anal cancers.
- Female
- 60-65 years old

RISK FACTORS:

- History of HPV infection (80-85%) and chronic immunosuppressed states, i.e., organ transplantation or a history of HIV+. in the HIV+ patient population, the use of anti-retroviral therapy has not reduced the incidence of anal carcinoma.
- History of receptive anal intercourse or sexually transmitted disease
- History of vulvar, vaginal or cervical cancer
- Smoking

While greater than 80% of patients typically present with early stage disease, 15-20% of patients will develop distant disease.

Locoregional disease

- Stages I-II with CRT treatment. 5 year- OS 80% (<2cm) and 50% (>5cm)
- Stage III 5 year- OS < 50%
- RTOG 98-11: male sex, lymph nodes, >5cm → independent prognostic factors
- ACT I trial: lymph nodes, male sex → higher local regional failure and lower OS
- CTRT with curative intent reserving abdominal perineal resection with colostomy (APR) for salvage surgery or in advanced selected cases.
- Local excision:
 - Tumors <2cm
 - Well differentiated
 - No muscular infiltration
 - Affectation of less than 50% circumference of the anus
- RT monotherapy 74 % local control. 5 year- OS 63%

CRT vs. RT

EORTC

5FU-MMC-RT vs RT

- CR 80% vs. 54%
- 18% higher rate
- 32% longer co
 - UK ACT II t
 - RTOG 98-1
 - Signifi
 - 5-year \(\)
 - Is induction
 - ACCORD 03 no adv
 - Recent retrospective a
 - CDDP- 5FU can be an alter.
 - ACCORD 16 (CDDP+5-FU+CETUXIII.
 - **ECOG 3205 and AIDS malignacy Consortium** Consortium Consortium

VITAL study. GEMCAD 09-02: "phase II trial of panitumumab plus mytomicin, 5-FU and radiation In patients with squamous cell carcinoma of the anal canal. ASCO 2014:

Tolerable regimen with a good compliance and an acceptable safety profile.

6 months:

CR 55%. PR 10%

74

ıncer

myelosuppresssion)

ous EA.

Metastatic

- Most common sides metastasis outside the pelvis are liver, lung and extrapelvic lymph nodes.
- The 2-year OS for patients with metastatic/relapsed disease is ≤10%.
- Limited data are available for this population:
 - Cisplatin/5-fluorouracil is the standard of care for first-line treatment based on a small retrospective study.
 - No phase III trial data are available in this setting.
- Experimental agents, best supportive care, or traditional chemotherapy regimens are commonly used to treat it, no regimens have demonstrated efficacy in this setting.
- Retrospective cohort study of treatment-naive metastatic SCCA patients of the anal canal. Eng C et al. ASCO 2012
 - CDDP- 5 FU vs. Carboplatin paclitaxel.
 - **PFS 8 months** vs. 4 months
 - A greater percentage of patients with poorly differentiated histology received CP (67% vs. 45%, p = 0.2).
 - Patients that received PF were twice as likely to discontinue treatment due to toxicity rather than progression vs. CP (17% vs. 8%).

Pembrolizumab (MK-3475) For PD-L1-Positive Squamous Cell Carcinoma of the Anal Canal: Preliminary Safety and Efficacy Results From KEYNOTE-028

Patrick A. Ott,¹ Sarina A. Piha-Paul,² Pamela Munster,³ Michael J. Pishvaian,⁴ Emilie van Brummelen,⁵ Roger B. Cohen,⁶ Carlos Gomez-Roca,⁷ Samuel Ejadi,⁸ Mark Stein,⁹ Emily Chan,¹⁰ Matteo Simonelli,¹¹ Anne Morosky,¹² Sanatan Saraf,¹² Minori Koshiji,¹² Jaafar Bennouna¹³

¹Dana-Farber Cancer Institute, Boston, USA; ²University of Texas MD Anderson Cancer Center, Houston, USA; ³UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, USA; ⁴Georgetown University, Washington DC, USA; ⁵Netherlands Cancer Institute, Amsterdam, Netherlands; ⁶University of Pennsylvania, Philadelphia, PA, USA; ⁷Institut Claudius Regaud, Toulouse, France; ⁸Virginia G. Piper Cancer Center, Scottsdale, AZ, USA; ⁹Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; ¹⁰Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; ¹¹Humanitas Cancer Center, Rozzano, Italy; ¹²Merck & Co., Inc., Kenilworth, NJ, USA; ¹³Institut de Cancérologie de l'Ouest, Nantes, France

ecco ecco

cco ecc

ecco .

0 6000

MARKA CCCO ODC EU

3 or more lines Positive PD-L1 PS 0-1

Antitumor Activity (RECIST v1.1, Investigator Review)

Best Response	n	%	95% CI
Complete response	0	0	0.0-13.7
Partial response ^a	5	20	6.8-40.7
Stable disease	11	44	24.4-65.1
Progressive disease	8	32	14.9-53.5
Not assessed ^b	1	4	0.1–20.4

ORR: 20.0% (95% CI, 6.8–40.7)

• DCR: 64.0% (95% CI, 42.5–82.0)

Key points

- 1. CRT with MMC 5FU is superior to RT.
- 1. CDDP- 5FU + RT does not improve either complete RR or local control compared with MMC and does not reduce overall toxicity (but results in less myelotoxicity)
- 2. Neoadjuvant chemotherapy has not improved loco-regional or distant control, and colostomy-free survival (CFS) is significantly worse. Data suggest that local control and DFS are also worse.
- 1. Additional maintenance/consolidation chemotherapy following CRT has not impacted on local control, DFS or OS.
- 2. CDDP- 5FU is the standard in mestastatic disease.
- 3. New perspectives: molecular therapies. Immunotherapy

Biliary Tract and Gallbladder Cancers

Heterogeneous disease with multiple locations:

Intraheptaic - IHCCA

Extrahepatic - EHCAA (bile ducts, Klatzkin, periampullary)

Gallbladder (80-95%, more aggressive).

We can't be sure that these locations are truly the same pathology

Majority are ADC

- Overall rare tumors worldwide (less 3%)
- Regions with high incidence
 - IHCCA in Thailand
 - GBC leading cause of cancer death in Chile, northern India
 - IHCCA one of the few tumors that is steadily rising in incidence in the U.S.
- Highly locally-invasive
- Few patients are resecable
- High recurrence rates
- Chemo-resistant
- EHCCA, IHCCA, GBCA molecular heterogeneity

Characteristic	EHCCA	IHCCA	GBCA
Risk Factors	PSC, hepatolithiasis Choledocal cysts	Chronic hepatitis Cirrhosis	Gallstones Age Obesity
Tumor morphology	Periductal infiltrating & intraductal growth	Mass-forming, sclerotic tumor center	Locally invasive & metastasizes widely
Patterns of spread	Proximally along large bile ducts; to perihilar LN; peritoneal carcinomatosis	Diffusely along intrahepatic biliary tree, liver parenchyma, LN	Direct invasion through GB wall to adjacent liver, peritoneum, pelvis
Clinical behavior	Present "early" with biliary obstruction	Present when advanced due to absence of clinical signs; can be indolent	High post-resection recurrence. Aggressive,

Prognostic factors

- Nodal involvement
- 2. Incomplete resection

Gallblader

5-year OS 60% stage 0, 39% stage I and 15 % for stage III.

Local recurrence 15% (R0) and 20% (R1)

Rates of distant disease 85% (R0) and 80% (R1)

IHCCA

mOS 53m for stage II and 16m for stage III

RR 53% (R0) and 5-year OS 33%

EHCCA

5-year OS 42.52%

Locoregional RR 59% and 41% distant recurrence

TABLE 1. Treatments for Biliary Cancer

Surgery

Surgery

not in case of cholangiocarcinoma.

Type

Gallbladder carcinoma

Intrahepatic

cholangiocarcinoma

Treatment

Adjuvant CRT

Adjuvant CRT

Local treatment

Key Points

Extrahepatic Surgery Adjuvant CRT Transplant		Options include partial hepatectomy or pancreaticoduodenectomy depending on location Adjuvant CRT includes fluoropyrimidine or gemcitabine +/- RT Orthotopic liver transplantation with perioperative CRT may improve DFS, but is associated with high toxicity and morbidity
CRT indicates chemoradiation radioembolization.	; DFS, disease-free surv	ival; RFA, radiofrequency ablation; RT, radiation therapy; TACE, transarterial chemoembolization; TARE, transarterial
Metanalisis (Horg specially with lym	•	udies adjuvant CT and CRT improved outcomes in gallblader and ICC (ement)

Takada et al. Phase III. (5 Fu- MMC vs. control) Improved 5-year DFS for patients with gallblader cancer but

resection of segments 4b and 5 for R0 margin

Partial hepatectomy goal is for R0 resection

Smaller tumors <5 cm have the best indication

Adjuvant CRT include fluoropyrimidine or gemcitabine +/- RT

Adjuvant CRT includes fluoropyrimidine or gemcitabine +/- RT

RFA, TACE, and TARE can be used in poor surgical candidates

Cholecystectomy alone can be curative for early T1a tumors, which otherwise require radical

Trial	Treatment	Outcome
ABC-0139	Gemcitabine + cisplatin vs gemcitabine alone	Median TTP 8 months vs 4 months 6-month PFS 57.1% vs 45.5%
ABC-02 ⁴⁰	Gemcitabine + cisplatin vs gemcitabine alone	Median OS 11.7 months vs 8.1 months
Japan ⁴¹	Gemcitabine + cisplatin vs gemcitabine alone	1-year OS 39% vs 31%
India ⁴²	Gemcitabine + oxaliplatin (GEMOX) vs best supportive care	Median OS 9.5 months vs 4.5 months
US/Canada ^{44,45}	Gemcitabine + capecitabine	Median OS 14 months

OS indicates overall survival; TTP, time to progression.

Targeted molecular therapies

- EGFR, VEGF, and MEK.
- No large-scale trials to have clinically significant benefits.
- EGFR is overexpressed in all types biliary cancers. Gallblader 12%. IHCCA 10-32%.
 FHCCA 5-20%
- VEGF is expressed in up to 50-60% with poor prognosis.
- Challenges to the development and investigation of targeted therapies include the rarity of biliary cancers in general and the molecular heterogeneity across the different types.
- Presence of mutations within the targeted pathways, such as KRAS mutations, which may have various degrees of expression across different patient populations and further confound study results.

Drug	Target	Current Investigation	Outcome (in months unless otherwise indicated)
Erlotinib	EGFR	Phase III erlotinib +/- GEMOX	Median PFS 5.8 vs 4.2; no difference in OS
Cetuximab	EGFR	Phase II BINGO cetuximab +/- GEMOX	Median PFS 6.1 vs 5.5; median OS 11.0 vs 12.4
Panitumumab	EGFR	Phase II panitumumab + GEMOX/capecitabine	Median PFS 8.3; median OS 9.8
Bevacizumab	VEGF	Phase II bevacizumab + GEMOX Phase II bevacizumab + erlotinib	Median PFS 7.0; median OS 12.7 Median TTP 4.4; median OS 9.9
Sorafenib	VEGF	Phase II sorafenib + gemcitabine/cisplatin	Median PFS 6.5; median OS 14
Sunitinib	VEGF	Phase II sunitinib monotherapy	Median TTP 1.7
Cediranib	VEGF	Phase II ABC-03 cediranib + gemcitabine/cisplatin compared with placebo	Median PFS 7.7 vs 7.4; median OS 14.1 vs 11.9
Selumetinib	MEK	Phase II selumetinib monotherapy	Median PFS 3.7; median OS 9.8
Trametinib	MEK	Phase I trametinib + pazopanib	Ongoing
Pazopanib	VEGF EGFR	Phase I trametinib + pazopanib	Ongoing
BGJ398	FGFR	Phase II neratinib monotherapy	Ongoing
Neratinib	HER-2	Phase II neratinib monotherapy	Ongoing
BKM120	PIK3CA	Phase II BKM120 monotherapy	Ongoing
Vemurafenib	BRAF	Phase I vemurafenib + cetuximab and irinotecan	Ongoing
AG-120	IDH 1	Phase I AG-120 monotherapy	Ongoing

Immunotherapy. ESMO 2015

- KEYNOTE 0-28. PEMBROLIZUMAB
 - 3 or more lines
 - Positive PD-L1
 - PS 0-1
- ORR 17%. DCR 34%
- More frequent toxicity: asthenia, diarrhea and nausea. Grade 1-2
- Grade 2-3 toxicity immune-based.

Keypoints

- 1. Biliary tract cancer has poor prognosis.
- 2. Heterogeneous disease
- 3. Adjuvant CRT is recommended in LA with risk factors
- 4. The level 1 evidence standard is gemcitabine and cisplatin
- 5. Other combination regimens have activity
- 6. The future of this disease should lie in targeted therapies and there are a lot of targets. However, these are rare tumors and subdividing them by biomarkers may prove difficult

