

V SIMPOSIO GETHI 18/19 noviembre de 2019

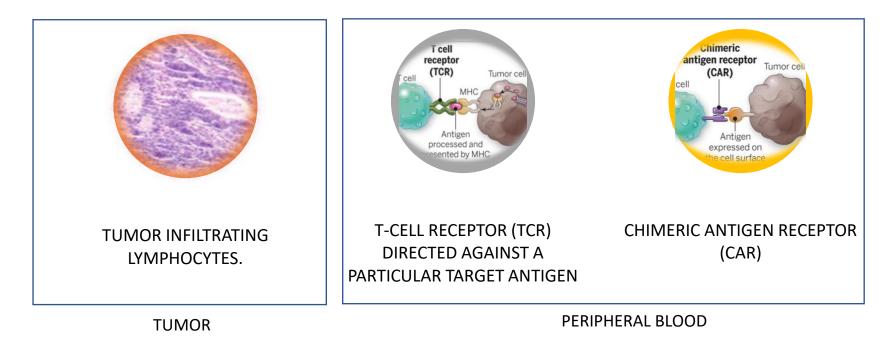
Ilustre Colegio Oficial de Médicos de Madrid. Aula Jiménez Díaz. Madrid

Terapia Celular en sarcoma sinovial y otros tumores sólidos

Dr. Victor Moreno

START Madrid-FJD, Early Phase Clinical Trials Unit

University Hospital Fundación Jiménez Díaz



V SIMPOSIO GETHI

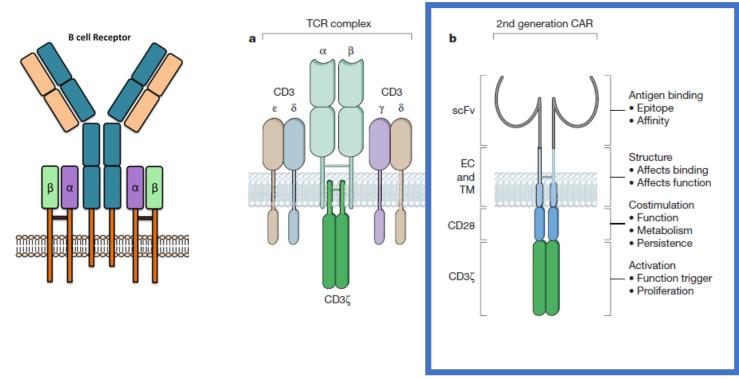
Adoptive cell transfer


personalized cancer immunotherapy that involves the administration of a patient's own autologous immune cells

Steven A. Rosenberg, and Nicholas P. Restifo Science 2015;348:62-68

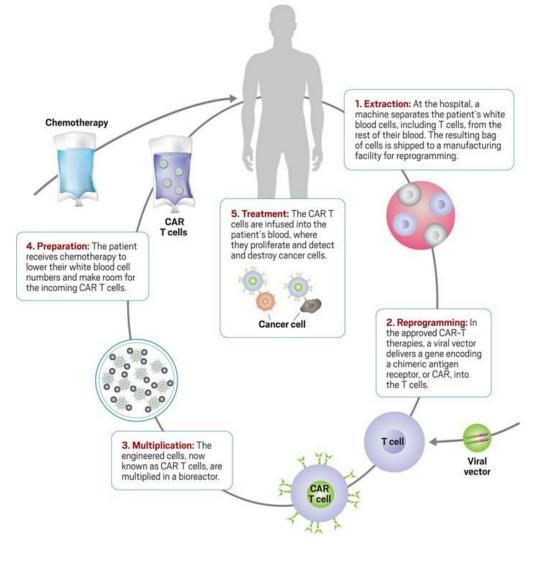
V SIMPOSIO GETHI

ACT for cancer timeline

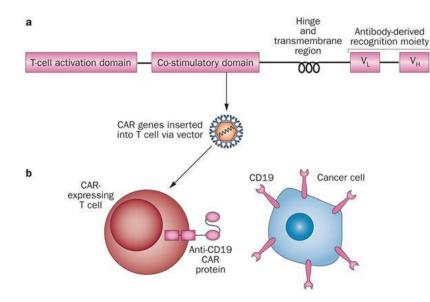

Adapted from Nat Rev Cancer. 2008 Apr; 8 (4) 299-308 and Science 2015, April, 3, vol 348 issue 6230

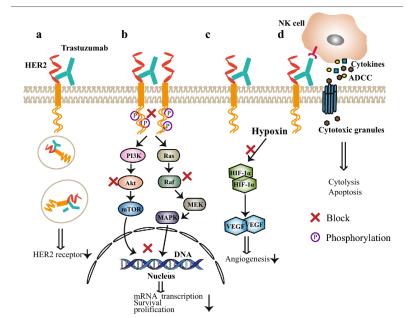
CD-19 targeted CAR T-cell approaches for ALL and NHL

	Author (trial)	Sites	Phase	Costim	T-cell subset	Vector	Time ^a	Enrolled	Treated	Population	LD ^b	CRS ^c (grade 3+) ^d	NT ^c (grade 3+) ^d	Response ^e	Analysis
Pre-B- ALL	Maude (ELIANA) ¹	Multicenter	II	4-1BB	Unselected	Lentivirus	45 d (S)	92	75	Pediatric	95% Flu/ CPM	77% (48%)	40% (13%)	81%	Of treated
	Lee⁵	NCI	I	CD28	Unselected	γ-Retrovirus	7-11 d (M)	21	21	Pediatric	Flu/CPM or other	76% (29%)	29% (5%)	70%	Intent to treat
	Gardner ⁸²	SCRI	1/11	4-1BB	CD4 and CD8	Lentivirus	15 d (M), 53 d (S)	45	43	Pediatric	Prefer Flu/ CPM	93% (23%)	49% (21%)	89%	Intent to treat
	Hay ⁸⁴	FHCRC	1/11	4-1BB	CD4 and TcmCD8	Lentivirus	19 d (M)	61	53	Adult	CPM +/- Flu	75% (19%)	(23%)	85%	Of treated
	Park ³	MSKCC	I	CD28	Unselected	γ-Retrovirus	Unknown	83	53	Adult	CPM +/- Flu	85% (26%)	(42%)	83%	Of treated
	Jacoby ⁸⁶	Israel	lb/ll	CD28	Unselected	γ-Retrovirus	9-10 d (M)	21	20	Pediatric	Flu/CPM	80% (20%)	55% (30%)	90%	Of treated
NHL	Schuster (Juliet) ⁹⁷	Multicenter	II	4-1BB	Unspecified	Lentivirus	54 d (S)	165	111	Adult, DLBCL	73% Flu/ CPM	58% (22%)	21% (12%)	3 mo: RR 52%, CR 40%	Of treated
	Neelapu ² (Zuma)	Multicenter	1/11	CD28	Unspecified	γ-Retrovirus	17 days (S)	111	101	Adult, NHL	Flu/CPM	93% (13%)	64% (28%)	6 mo: RR 82%, CR 54%	Modified intent to treat
	Abramson ⁹⁸ (Transcend)	Multicenter	I	4-1BB	CD4 and CD8	Lentivirus	Unknown	39	14	Adult, NHL	Flu/CPM	21% (0%)	(14%)	1 mo: RR 82%, CR73%	Of treated

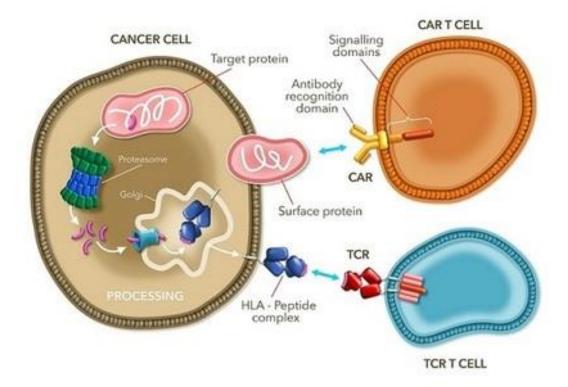

Jacoby E, Shahani SA, Shah NN. Updates on CAR T-cell therapy in B-cell malignancies. Immunol Rev. 2019;290(1):39–59.

(Chimaeric) Antigen Receptors



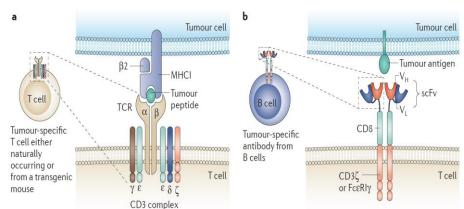

Sadelain, Nature 2017

CART treatment process


Liquid vs. Solid tumor

intitumor mechanisms of anti-HER2 monoclonal antibody (taking an example of trastuzumab). **a** Trastuzumab downregulate

Modified TCR


Modified TCR vs. CAR

Pros

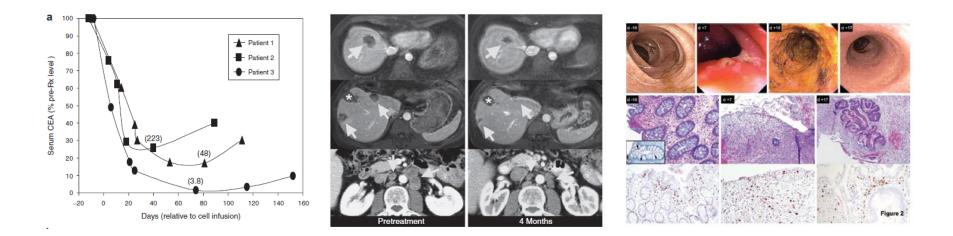
- Intracellular proteins.
- Identification of mutant proteins specific of cancer cells.

Cons

- HLA selection.
- Resistance mechanisms antigen presentation

- No HLA selection
- Direct activation of T lymphocyte from tumor cell (no APC required)

Cons


- Difficult to find surface protein specific of cancer cell only.
- Potentially blocked by soluble antigen

•

Kershaw, Nat Rev Cancer, 2013

T Cells Targeting Carcinoembryonic Antigen Can Mediate Regression of Metastatic Colorectal Cancer but Induce Severe Transient Colitis

• Murine T cell receptor (TCR) against human carcinoembryonic antigen (CEA)

Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DAN, Feldman SA, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther. 2011;19(3):620–6.

Genetically redirected T cells for solid tumors

Target	Cancer	Receptor	N patients	Responses	Ref
ERBB2	Colorectal	CAR: CD28-CD137-CD3ζ	1 (deceased resp distress	s lung ERBB2 expression)	Morgan, R. A. <i>Mol. Ther.</i> 2010
CEA	Colorectal	TCR	3 (3 severe colitis)	1	Parkhurst MR, . <i>Mol Ther</i> 2011
MAGE A3	Myeloma and melanoma	TCR	2 (deceased) TTN cross r	eactivity in heart	Linette, G. P. <i>et al. Blood</i> 2013
CEA	Colorectal and breast	CAR: CD3ζ	7	0	Ma, Q 2002.
αFR	Ovarian	CAR: FcRy	12	0	Kershaw, M. H. <i>et al. Clin.</i> <i>Cancer Res</i> 2006
CD171	Neuroblastoma	CAR: CD3ζ	6	1	ParK, JR. Mol Ther. 2007
CAIX	Renal	CAR: CD3ζ	11	0 (+hepatotoxicity)	Lamers CH. Mol Ther. 2013
GD2	Neuroblastoma	CAR: CD3ζ	19	3 (CR)	Louis, C. U. et al. Blood 2011

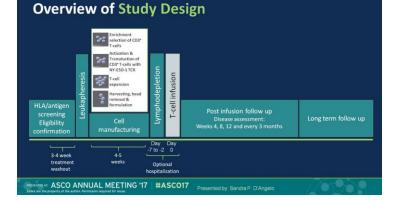
NY-ESO in Synovial Sarcoma

NY-ESO-1^{c259} TCR : Enhanced Affinity • Recognizes NY-ESO-1 specific HLA-A02 restricted peptide (SLLMWITQC)

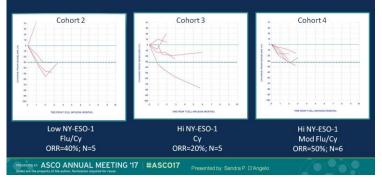
ASCO ANNUAL MEETING '17 #ASCO17 Presented by: Sandra P. D'Ar

T cell Ar

Perforin

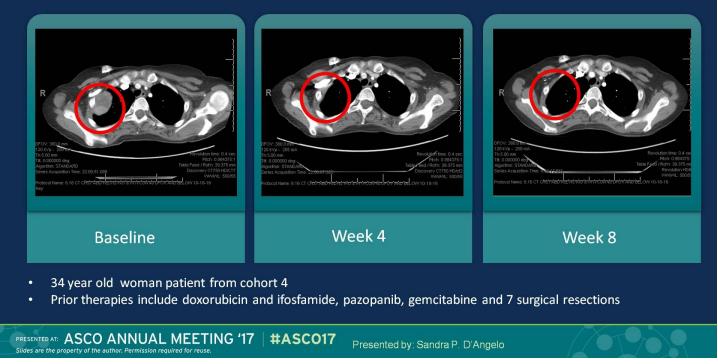

Affinity

Specificity

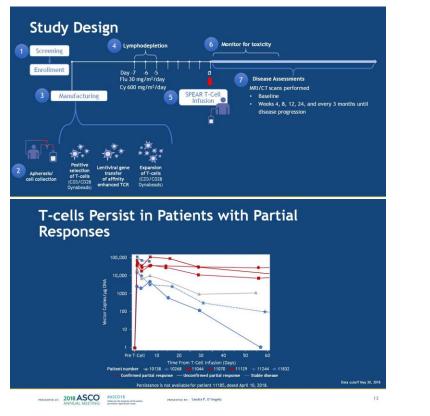

- Lentivirus vector
- IL-2 is omitted
- Minimum cell dose 1x10^9

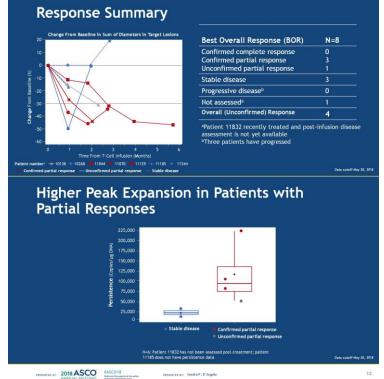
Response Summary

	Cohort 1 Hi NY-ESO-1 Hi Flu/Cy N=12	Cohort 2 Lo NY-ESO-1 Hi Flu/Cy N=5	Cohort 3 Hi NY-ESO-1 Cy N=5	Cohort 4 Hi NY-ESO-1 Mod Flu/Cy N=6
Best overall response: N (%)				
CR	1(8)	0 (0)	0(0)	0 (0)
PR	5 (42)	2 (40)	1 (20)	3 (50)
SD	6 (50)	1 (20)	4 (80)	2 (33)
PD	0 (0)	1 (20)	0 (0)	1 (17)
Not assessed	0 (0)	1 (20)	0 (0)	0 (0)
ORR: Confirmed, CR + PR: N (%)	6 (50)	2 (40)	1 (20)	3 (50)
Median PFS: weeks (range)	15 (8, 38)	12 (03- 14)	12 (8, 38)	NE
Median response duration: wks (range)	30.9 (13, 72)	7.5 (6-9)	21	NE



Kinetics of Response


Presented By Crystal Mackall at 2017 ASCO Annual Meeting


Tumor Responses

Presented By Crystal Mackall at 2017 ASCO Annual Meeting

NY-ESO in liposarcoma

Presented By Sandra D"Angelo at 2018 ASCO Annual Meeting

ADP-A2M4 (MAGE-A4) Synovial Sarcoma

PATIENT CHARACTERISTICS

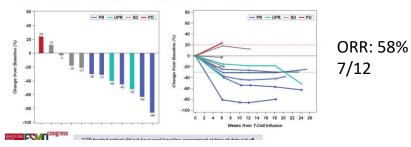
N=13*		
Sex	Male: 8	Female: 5
Age	Median: 53	Range: 31 - 76 <i>Two patients</i> >70
Race	White: 11	Asian: 2
ECOG status	ECOG 0 = 7	ECOG 1 = 6
Prior lines of systemic therapies	Median: 2	Range: 1 - 5
Cell dose x 10 ⁹	Median: 9.7	Range: 3.41 - 9.98

*13th treated patient did not have post-baseline assessment at time of data cut off.

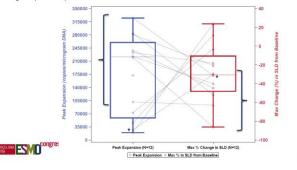
ANCELONA ESVO

Data cut off 3-Sep-19

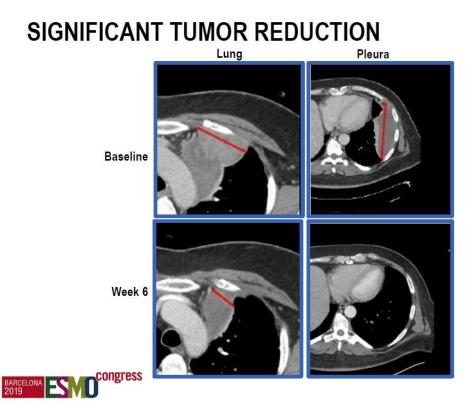
SAFETY: ADVERSE EVENTS ≥ GRADE 3


Preferred Term	Grade ≥3 N (%)	Preferred Term	Grade ≥3 N (%)
Leukopenia	12 (92.3%)	Aplastic anemia	1 (7.7%)
Lymphopenia	12 (92.3%)	Arrhythmia	1 (7.7%)
Neutropenia	10 (76.9%)	Decreased appetite	1 (7.7%)
Anemia	5 (38.5%)	Endocarditis staphylococcal	1 (7.7%)
Thrombocytopenia	5 (38.5%)	Hypermagnesemia	1 (7.7%)
Hypophosphatemia	5 (38.5%)	Hypocalcemia	1 (7.7%)
Rash	3 (23.1%)	Hypotension	1 (7.7%)
Febrile neutropenia	3 (23 1%)	Influenza like illness	1 (7.7%)
CRS	2 (15.4%)	Pancytopenia	1 (7.7%)
Hyponatremia	2 (15.4%)	Pleural effusion	1 (7.7%)
Acute kidney injury	1 (7.7%)	Sciatica	1 (7.7%)
Acute left ventricular failur	1 (7.7%)	Sepsis	1 (7.7%)
Anal abscess	1 (7.7%)	Troponin increased	1 (7.7%)

Most AEs were typical for this treatment and patient population Any Grade CRS is common in synovial sarcoma patients treated with ADP-A2M4


Data cut off 3-Sep-19

ADP-A2M4 SPEAR T-CELLS INDUCE CLINICAL RESPONSES Best overall response in 12 patients* with post-baseline assessments


TRANSDUCED T-CELLS PEAK EXPANSION

Higher peak expansion associated with decrease in tumor size from baseline

Data cut off 3-Sep-19

Presented by Brian A. Van Tine at ESMO 2019 in Barcelona, Spain

86% decrease in RECIST 1.1 and significant symptom improvement

- 53-year-old male
- Longstanding history of synovial sarcoma
 - Treated with surgery, radiotherapy, and multiple chemotherapy regimens
- High MAGE-A4 expression in tumor
 - Baseline SLD* 24 cm
- 9.87 x 10⁹ SPEAR T-cells
- Did well post-infusion
 - Grade 1 CRS and cytopenias
- Baseline scans:
 - Extensive disease in the lung and pleura-based tumor masses
- Week 6 scans:
 - One large pleura-based lesion disappeared and others reduced via RECIST 1.1 criteria

*Sum of the Longest Diameter of the target lesions

REDUCTION IN BULKY TUMOR

Week 12

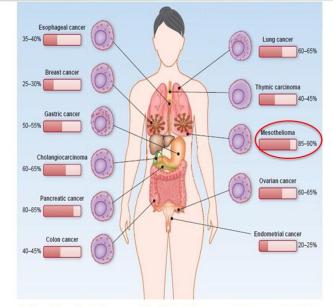
44% decrease by RECIST 1.1 and shortness of breath resolved

- 42-year-old male
- Diagnosed age 25
- · Recently developed metastatic disease
- Moderate MAGE-A4 expression
 - Baseline SLD 20 cm
- 9.95 x 10⁹ SPEAR T-cells
- Did well post-infusion
 - Grade 2 CRS and cytopenias
- At baseline
 - · Shortness of breath due to accumulation of fluid in pleural space
 - Tumor (left lung) displacing major blood vessels and compressing right lung
- Week 12 scans:
 - · Tumor decreased and non-target lesion disappeared
 - · Patient lung expanded; shortness of breath resolved

Regional delivery of mesothelin-targeted CAR T cells for pleural cancers: safety and preliminary efficacy in combination with anti-PD-1 agent

2019 ASCO Annual Meeting, Chicago

Memorial Sloan Kettering Cancer Center


Prasad S. Adusumilli, Marjorie G Zauderer, Valerie W Rusch, Roisin E O'Cearbhaill, Amy Zhu, Daniel Ngai, Erin McGee, Navin Chintala, John Messinger, Waseem Cheema, Elizabeth F Halton, Claudia R Diamonte, John Pineda, Alain Vincent, Shanu Modi, Steve Solomon, David R Jones, Renier J Brentjens, Isabelle C Riviere, Michel W Sadelain

Mesothelin is a target antigen for solid tumors

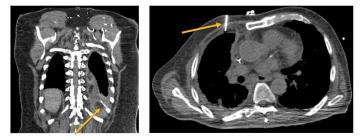
- Cell-surface antigen
- Expressed in majority of solid tumors

Annual incidence 371,977

Annual prevalence 2,119,926

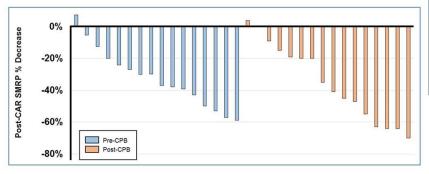
Morello A, Adusumilli PS. Cancer Discov 2016

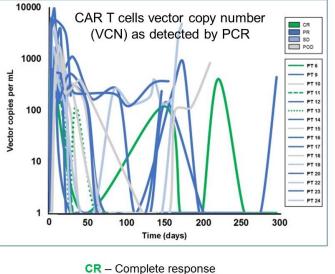
Single dose of CAR T cells administered intrapleurally


Cohort	РТ #	Age/ Sex	Diagnosis	Histology	Stage	CAR T Line of Therapy	Route of Administration
1	1	59F	Lung Cancer	Adeno Ca	IV	4	Pleural catheter
3e5/kg	2	69M	Mesothelioma	Epithelioid	IV	6	Pleural catheter
(no cyclo)	3	66F	Mesothelioma	Epithelioid	IV	5	Pleural catheter
2	4	56M	Mesothelioma	Epithelioid	IV	6	Pleural catheter
2	5	70F	Breast Cancer	Intraductal Ca	IV	9	IR
3e5/kg	6	72M	Mesothelioma	Biphasic	IIIA	2	IR
3	7	70M	Mesothelioma	Epithelioid	IIIA	2	Pleural catheter
-	8	73M	Mesothelioma	Epithelioid	IIIB	6	Pleural catheter
1e6/kg	9	66M	Mesothelioma	Epithelioid	IV	4	IR
4	10	70M	Mesothelioma	Epithelioid	IIIB	2	Pleural catheter
and the second second	11	74M	Mesothelioma	Epithelioid	IIIB	2	Pleural catheter
3e6/kg	12*	66M	Mesothelioma	Epithelioid	IIIB	2/5	Pleural catheter
5	13	76M	Mesothelioma	Epithelioid	IIIA	2	IR
-	14	69M	Mesothelioma	Epithelioid	IIIA	2	IR
6e6/kg	15	71M	Mesothelioma	Epithelioid	IIIB	2	Pleural catheter
	16	77F	Mesothelioma	Epithelioid	IV	7	IR
	17	71M	Mesothelioma	Biphasic	IIIA	2	IR
6	18	53M	Mesothelioma	Epithelioid	IIIB	3	IR
1e7/kg	19	64M	Mesothelioma	Epithelioid	IIIB	3	IR
0	20	70M	Mesothelioma	Epithelioid	IIIA	3	Pleural catheter
	21	61F	Mesothelioma	Epithelioid	IIIB	2	IR
7	22	73M	Mesothelioma	Epithelioid	IIIB	2	IR
	23	71F	Mesothelioma	Epithelioid	IV	2	IR
3e7/kg	24	70M	Mesothelioma	Epithelioid	IV	5	IR
8	25	55M	Mesothelioma	Epithelioid	IV	14	IR
	26	61M	Mesothelioma	Epithelioid	IV	3	IR
6e7/kg	27	77M	Mesothelioma	Epithelioid	11	2	IR

37% had \geq 3 lines of therapy

Cyclophosphamide preconditioning in cohorts 2-8

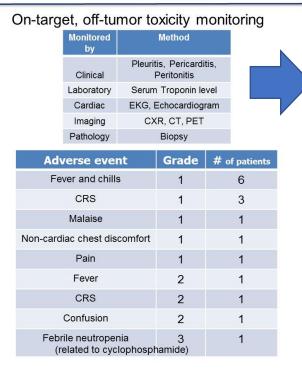

IR - intervention radiology



* Patient #12 re-infused at week 51

CAR T-cell persistence in peripheral blood

- CAR T-cells detected in peripheral blood from day 2 to 42 weeks (as well as in pleural fluid)
- Reduction in serum SMRP (soluble mesothelin related peptide) values observed as shown below



PR – Partial response SD – Stable disease POD – Progression of disease

Presented By Prasad Adusumilli at 2019 ASCO Annual Meeting

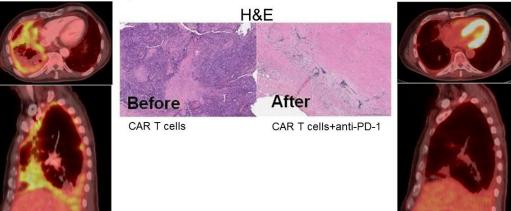
Intrapleural CAR T cells + systemic anti-PD1 antibody administration are well tolerated

No evidence of CAR T-cell related AEs <u>>Grade 2</u> (CTCAE V.4)

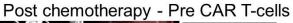
- No neurotoxicity
- No cytokine release syndrome (CRS)
- No on-target, off-tumor toxicity

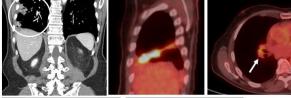
Following anti-PD1 agent administration -

- 2 patients developed SOB (grades 2 & 3)
- One patient Rx with IL-6 blockade (two doses) and steroids, currently off oxygen
- One patient treated with short term steroids (3 doses), back on anti-PD1 agent

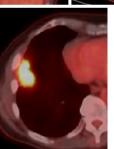

Anti-PD-1 agent administration following CAR T-cell therapy

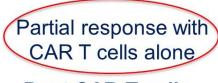
ohort	РТ #	Age/ Sex	Diagnosis	Histology	Stage	CAR T Line of Therapy	Route of Administration	PDL1 Status (%)	CPB started (week)	Best Response (Inv interpretation)		
1	1	59F	Lung Cancer	Adeno Ca	IV	4	Pleural catheter		-	POD		
3e5/kg	2	69M	Mesothelioma	Epithelioid	IV	6	Pleural catheter	0	9	POD		
(no cyclo)	3	66F	Mesothelioma	Epithelioid	IV	5	Pleural catheter	0	-	POD		
2	4	56M	Mesothelioma	Epithelioid	IV	6	Pleural catheter	0	-	POD		3 CR (11
	5	70F	Breast Cancer	Intraductal Ca	IV	9	IR	0	5	POD		
3e5/kg	6	72M	Mesothelioma	Biphasic	IIIA	2	IR	1%	6	CR		8 PR (30
3	7	70M	Mesothelioma	Epithelioid	IIIA	2	Pleural catheter	30%	-	SD	CR – Complete response	
1e6/kg	8	73M	Mesothelioma	Epithelioid	IIIB	6	Pleural catheter	0	-	POD	PR – Partial response	
Teorky	9	66M	Mesothelioma	Epithelioid	IV	4	IR	-	17	PR		5 SD (18
4	10	70M	Mesothelioma	Epithelioid	IIIB	2	Pleural catheter	0	6	POD	SD – Stable disease	
3e6/kg	10.000	74M	Mesothelioma	Epithelioid	IIIB	2	Pleural catheter	10%	6	CR	DOD Dreamacian of	11 PD (4)
	12*	66M	Mesothelioma	Epithelioid	IIIB	2/5	Pleural catheter	0	5/9	PR	POD – Progression of	
5	13	76M 69M	Mesothelioma Mesothelioma	Epithelioid Epithelioid	IIIA	2	IR IR	0	6	CR	disease	
6e6/kg		71M	Mesothelioma	Epithelioid	IIIA	2	Pleural catheter	0 5%	8	PR POD		
	16	77F	Mesothelioma	Epithelioid	IV	7	IR	5% 80%	6	POD		
		71M	Mesothelioma	Biphasic	IIIA	2	IR	0	6	PR		41% OF
6	18	53M	Mesothelioma	Epithelioid	IIIB	3	IR	0	6	POD		
1e7/kg	and the second	64M	Mesothelioma	Epithelioid	IIIB	3	IR	0	6	SD		
ienkg	20	70M	Mesothelioma	Epithelioid	IIIA	3	Pleural catheter	Ő	6	PR		
	21	Price (Sec.	Mesothelioma	Epithelioid	IIIB	2	IR	0	5	PR		
7	22	73M	Mesothelioma	Epithelioid	IIIB	2	IR	0	5	SD		
7	23	71F	Mesothelioma	Epithelioid	IV	2	IR	0	8	PR		
3e7/kg	24	70M	Mesothelioma	Epithelioid	IV	5	IR	0	6	POD		
8	25	55M	Mesothelioma	Epithelioid	IV	14	IR	0	5	POD	* Patient #12 re-infused at week 51	
	26	61M	Mesothelioma	Epithelioid	IV	3	IR	0	4	SD		
6e7/kg	27	77M	Mesothelioma	Epithelioid	1	2	IR	5%	6	SD		

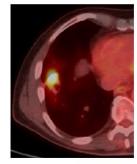

MSLN CAR T-cells + anti PD-1 agent Complete response in patient #6 (16 months)


73 yr old h/o served in a battle ship diagnosed with BIPHASIC mesothelioma

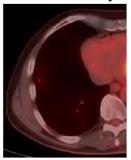
- April 2017 <u>Unresectable</u> disease following chemotherapy
- May 2017 3e5 CAR T cells/kg following Cyclophosphamide administered
- July 2017 <u>Pembrolizumab</u> started (PD-L1 <1%, low mutational burden)
- Nov 2017 Complete metabolic response, Serum SMRP normal
- Feb 2018 CAR T cells detected at 32 weeks in blood and tissue
- No additional therapies for 16 months


Mesothelin-targeted CAR T-cell therapy MSLN CAR T-cells + anti PD-1 agent Complete response in patient #13 - 14 months and ongoing




CAR T-cells administered in interventional radiology

April



Post CAR T-cells

May

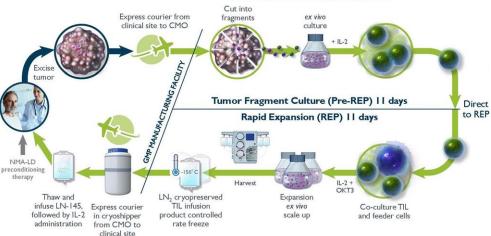
Addition of anti-PD-1 antibody

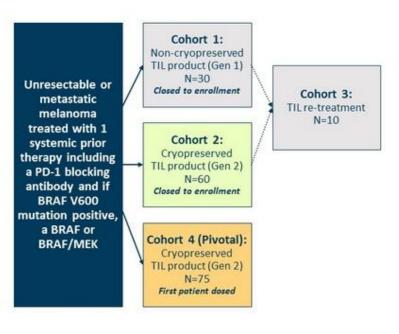
Nov

162 ASCO ANNUAL MEETING | MAY 31- JUNE 4, 2019 | CHICAGO, IL, USA

Safety and efficacy of cryopreserved autologous tumor infiltrating lymphocyte therapy (LN-144, lifileucel) in advanced metastatic melanoma patients who progressed on multiple prior therapies including anti-PD-1

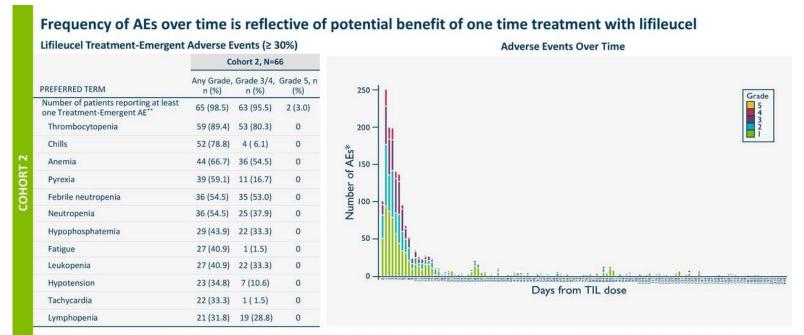
Amod Sarnalk¹, Nikhil I, Khushalan¹, Jason Alan Chesney², Harriet M, Kluger³, Brenedan D, Curus¹, Karl D, Lewis³, Sajeve Samuel Thomas³, Eric D.Whitman², Omid Hamild¹, Jose Lutzky², Anna C, Pavlick¹⁰ Jeffrey S. Weber¹⁰, James M.G. Larkin¹¹, Debora Barton¹², Kelly DiTrapani¹², Renee Wu¹², Maria Fardis¹², John M, Kirkwood¹² ¹ User Media Cover Community, Lippen Graben Baren Cover Control Multishing at Covering Lawish, K. The School Holden Steal State Cover Community of Coverable Cover Control Analysis Cover Cover Thomas¹, Holden Steal State Cover Cover Cover Analysis Cover Cover


BACKGROUND


- Treatment options are limited for patients with advanced melanoma who have progressed on checkpoint inhibitors and targeted therapies
- Adoptive cell therapy (ACT) utilizing tumor-infiltrating lymphocytes (TIL) leverages and enhances the body's natural defense against cancer
- · TIL has demonstrated antitumor efficacy:
- Durable long-term responses in heavily pretreated patients¹

 innovaTIL-01 (NCT02360579) is an ongoing Phase 2 multicenter study:

- Investigational agent: autologous TIL (lifileucel; LN-144)
 Patient population: unresectable metastatic melanoma
- who have progressed on checkpoint inhibitors and BRAF/MEK inhibitors (if BRAF mutated)
- Manufacturing conditions: central manufacturing of cryopreserved TIL, 22 day duration



lovance Biotherapeutics Inc. ASCO 2019 by A Sarnaik et al.

Adverse events LN-144

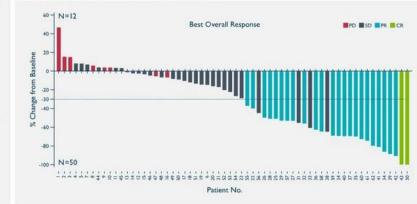
**Treatment-Emergent Adverse Events refer to all AEs starting on or after the first dose date of TiL up to 30 days. Patients with multiple events for a given preferred term are counted only once using the maximum grade under each preferred term. Safety terms which describe the same medical condition were combined.

"The number of AEs is cumulative and represent the total number of patients dosed

lovance Biotherapeutics. Presented at ASCO 2019 by A Sarnaik et al.

LN-144 results in melanoma

PATIENTS N=66


Table	3.	Efficacy
-------	----	----------

RESPONSE (RECIST of 1)	PALIENTS, N=00
Objective Response Rate (ORR)	25 (38%)
Complete Response (CR)	2 (3%)
Partial Response (PR)	23 (35%)
Stable Disease (SD)	28 (42%)
Progressive Disease (PD)	9 (14%)
Non-Evaluable	4 (6%)
Disease Control Rate (DCR)	53 (80%)
Median Duration of Response (DOR)	Not Reached
Min, Max	1.4+, 19.8 +
	PATIENTS NE66
ORR BY SUBGROUP	n (%)
Prior Anti-CTLA-4	
Yes (n=53)	20 (38)
No (n=13)	5 (39)
BRAF Mutation Status	
Mutated (V600E or V600K), (n=17)	8 (47)
Non-Mutated (n=49)	17 (35)

- Cohort 2: Lifileucel Infusion Product and TIL Therapy Characteristics
- Mean number of TIL cells infused: 27.3 x 109
- Median number of IL-2 doses administered was 5.5

- Mean Time to response 1.9 months (range 1.3-5.6)
- All assessments are by RECIST 1.1
- Responses are deep nearly all responders are greater than 30%

Lifileucel best overall response rate⁽¹⁾


(1) Three subjects had no post TIL disease assessment due to early death; one subject had no post-TIL disease assessment due to new cancer therapy. For subject #30,100% change from baseline is displayed for the CR visit involved lymph nodes.

Iovance Biotherapeutics. Presented at ASCO 2019 by A Sarnaik et al.

82 ASCO ANNUAL MEETING | MAY 31- JUNE 4, 2019 | CHICAGO, IL, USA

Safety & efficacy of adoptive cell transfer using autologous tumor infiltrating lymphocytes (LN-145) for treatment of recurrent, metastatic, or persistent cervical carcinoma

Amir A. Jazaen¹¹, Emess Zairov¹, Rodabe Navroze Amaria¹, Andrey S. Artz², Robert P. Edwards⁴, Robert Michael Well, D'Arapan¹¹, Huling L¹⁴, Maria Fadds¹⁴, Braildy J. Mohl² Robert Montril¹⁶, Koji Missov¹¹, Stephanie Gaillard¹², Peter G. Rose¹¹, Jesus Garcia Donas¹⁴, Jacqueine Maria Tromp¹³, Kelly D'Arapan¹⁴, Huling L¹⁴, Maria Fadds¹⁴, Braildy J. Mohl² Toleration of the stephanie Gaillard¹², Peter G. Rose¹¹, Jesus Garcia Donas¹⁴, Jesus Garcia Donas¹⁴, Jesus Haria Fadds¹⁴, Braildy J. Mohl² Toleration of the stephanie Gaillard¹², Peter G. Rose¹¹, Jesus Garcia Donas¹⁴, Jesu

METHODS

- · Data extract as of 14 May 2019
- Safety & Efficacy Sets: 27 patients who underwent resection for the purpose of TIL generation and received LN-145 infusion

NCT0310849

RESULTS

Table I. Patient Characteristics

CHARACTERISTIC	N+27. (%)	CHARACTERISTIC	N=27, (%)	
Age		ECOG score. n (%)	Screening	Baseline
Median	45	0	19 (70)	9 (33)
Min, Max	30,68	1	8 (30)	17 (63)
Prior sherapies, n (%)		22	0	1 (4)
Mean # prior therapies	2.4	Histologic Cell Type, n (%)		
Platinum-Based	27 (100)	Squamous Cell Carcinor	14	(2 (44)
Taxane	26 (96)	Adenocarcinoma		12 (44)
And-VEGF	22 (82)	Adenosquamous Carcin	oma	3 (11)
Radiotherapy	20 (74)	Target Lesion Sum of Diam	vetera (mm)	
Anti-PD-1/PD-L-1	4 (15)	Mean (SD)		61 (38)
Cancer Status at Screening		Min, Max		10, 165
Mecastatic	14 (52)	Number of Target & Non-	Target Lesions (at Basel	ine)
Recurrent	10 (37)	>)		17 (63)
Persistent	3 (11)	Mean (Min, Max)		4 (1.9)

Iovance Biotherapeutics. Presented at ASCO 2019 by A Jazzaeri et al.

82 ASCO ANNUAL MEETING | MAY 31- JUNE 4, 2019 | CHICAGO, IL USA

Safety & efficacy of adoptive cell transfer using autologous tumor infiltrating lymphocytes (LN-145) for treatment of recurrent, metastatic, or persistent cervical carcinoma

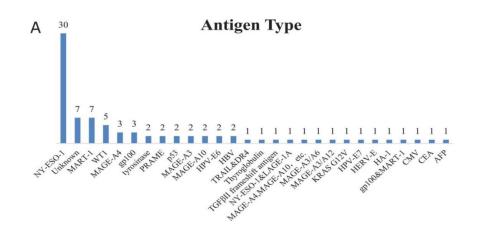
Amir A. Jazaer¹¹, Emes Zainoz¹, Rodabe Navroze Amaria¹, Andrew S.Artz², Robert P. Edwards⁴, Robert Michael Wenham⁵, Brian M. Slomovitz⁴, Axel Waither², Sajeve Sanuel Thomas⁴, Jason Alan Chesney⁹, Robert Morris¹⁰, Koji Matsuo¹¹, Stephanie Gallard¹¹, Peter G. Rose¹¹, Jesus Garcia Donas¹¹, Jacqueline Maria Tromp¹¹, Arki Di Trapan¹¹, Hulling L¹¹, Maria Fards¹¹, Bradis¹, J. Honk¹¹ The Universit¹¹ Status¹¹, Stephanie Came International Concerner, Mathieli, N. Juneury of Lange Comprehense Cancer Concerner, Canges Human, Strain M. Huse Holling Linternation Cancer and Mathielia Cancer Contex Timps FL "sylnesse Comprehense Cancer Concerner, Canges Human, Strain M. Huse Holling Linternation Cancer and Mathielia Cancer Contex Timps FL "sylnesse Comprehense Cancer Concerner, Cancer Linternation Cancer Cancer University of M

- Unserving Holps Bolds Brands Brands Brands Developed (Figure 1) (Second Developed (Figure 2)) (Second Developed (Figure 2

Figure 1. Efficacy of adoptive cell transfer using autologous tumor infiltrating lymphocytes (LN-145) for treatment of recurrent, metastatic, or persistent cervical carcinoma

Efficacy	PATIENTS, N=27
RESPONSE (RECIST v1.1)	n (%)
Objective Response Rate (ORR)	12 (44.4%)
Complete Response (CR)	3 (11.1%)
Partial Response (PR)	9 (33.3%)
Stable Disease (SD)	11 (40.7%)
Progressive Disease (PD)	4 (14.8%)
Non-Evaluable	0
Disease Control Rate (DCR)	23 (85.2%)
Median Duration of Response (DOR)	Not Reached
Min, Max (range)	2.6+ to 9.2+ months
	© Iovance Biotherapeutics, Inc. 2019

Figure 4. Efficacy: Best Overall Response

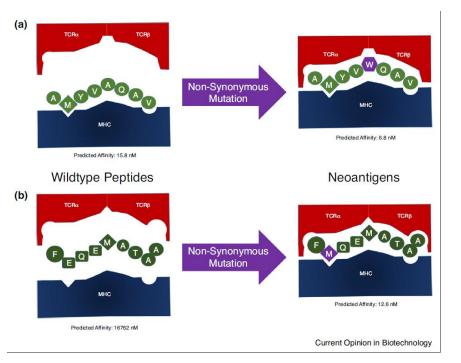

lovance Biotherapeutics. Presented at ASCO 2019 by A Jazzaeri et al.

NCT03108495

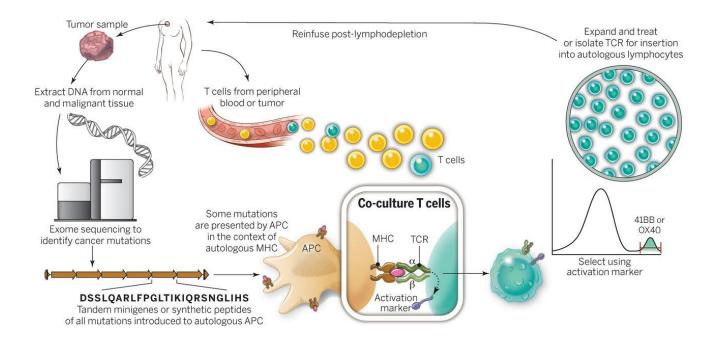
re information, please cont

Current approach public antigens (non mutated)

- Limited potential
- On-target off tumor reactivity


Type of antigens	Antigen characteristics	Example of human tumor antigens
Cancer-germline	Expressed only by tumor cells and adult reproductive tissues	MAGE, BAGE, GAGE, NY-ESO-1
Differentiation	Expressed by tumors and a limited range of normal tissues	Tyrosinase, Melan-A, gp100, CEA, MART-1
Overexpressed	Expressed by both normal and tumor cells, but much highly expressed in tumor cells	HER2, WT1, MUC1, ppCT
Viral	Expressed only by tumor cells as a result of viral infection	HPV, HBV, EBV, HTLV

Durgeau A, 2018

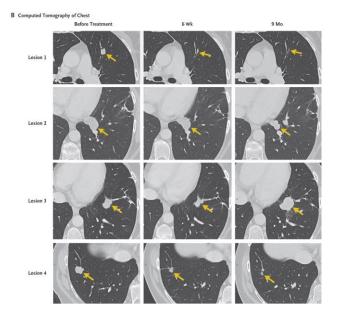

Private neoantigens

- Neoantigen: somatic mutation creates a peptide epitope that is expressed, processed, presented by one of the patient's MHC molecules, and recognized by a subset within the patient's T cell repertoire.
- Stochastic: each mutation increases the odds of neoantigen formation

Bethune et al, 2017

Treatment of patients with T cells recognizing tumorspecific mutations

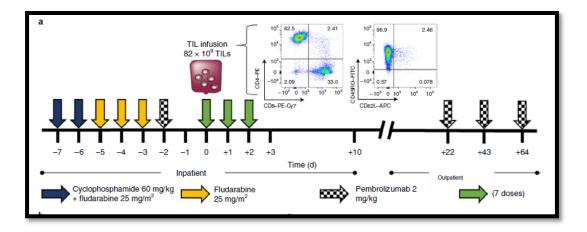
Steven A. Rosenberg, and Nicholas P. Restifo Science 2015;348:62-68

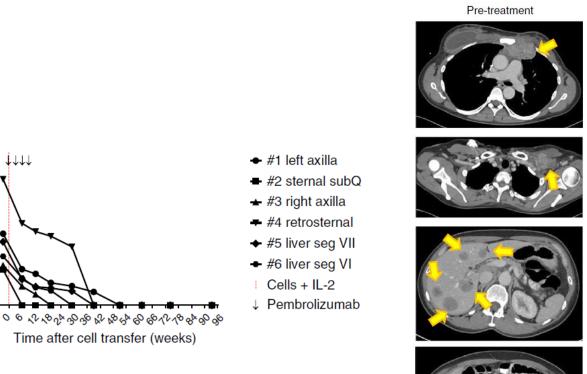

Copyright © 2015, American Association for the Advancement of Science

The NEW ENGLAND JOURNAL of MEDICINE

BRIEF REPORT

T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer


- HLA-C*08:02—restricted tumor-infiltrating lymphocytes that were composed of four different T-cell clonotypes that specifically targeted KRAS G12D.
- Objective regression of all seven lung metastases
- one of these lesions had progressed on evaluation 9 months after therapy. The lesion was resected and found to have lost the chromosome 6 haplotype encoding the HLA-C*08:02 class I major histocompatibility complex (MHC) molecule.


Tran E, Robbins PF, Lu YC, Prickett TD, Gartner JJ, Jia L, et al. T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med. 2016;375(23):2255–62.

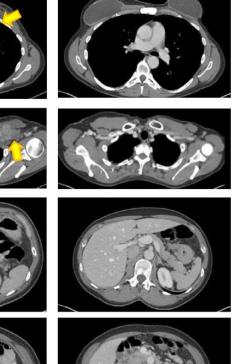
Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer

- One patient with metastatic breast cancer.
- Tumor-infiltrating lymphocytes (TILs) reactive against mutant versions of four proteins—SLC3A2, KIAA0368, CADPS2 and CTSB

Zacharakis N, Chinnasamy H, Black M, Xu H, Lu YC, Zheng Z, et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med. 2018;24(6):724–30.

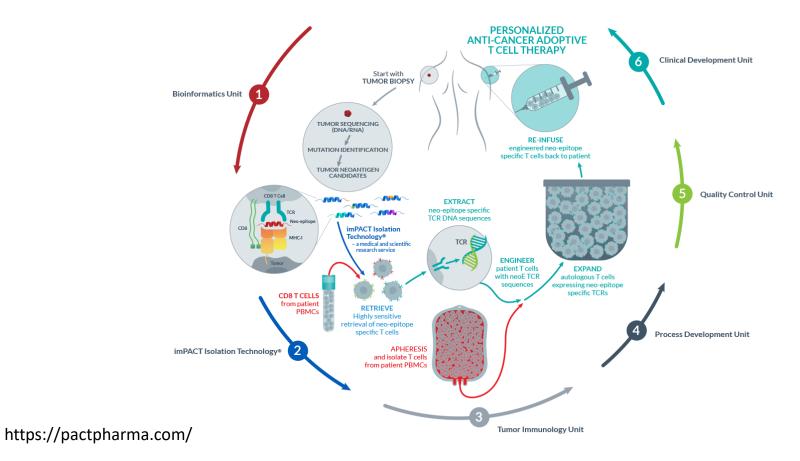
8

6


4

2

Longest diameter (cm)

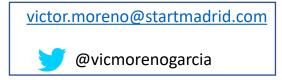

 $\downarrow\downarrow\downarrow\downarrow$

22 months post-treatment

Zacharakis N et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med

Personalized neoantigen targeted T cells

Conclusion


- Adoptive cell therapy (ACT) is no longer a promise to treat solid tumors.
 - Tumor Infiltrating Lymphocytes: Melanoma and cervical cancer.
 - TCR: Synovial sarcoma.
 - CART: mesothelioma
- However there are still some critical points:
 - Ideal target identification
 - Resistance mechanisms

Thank you

