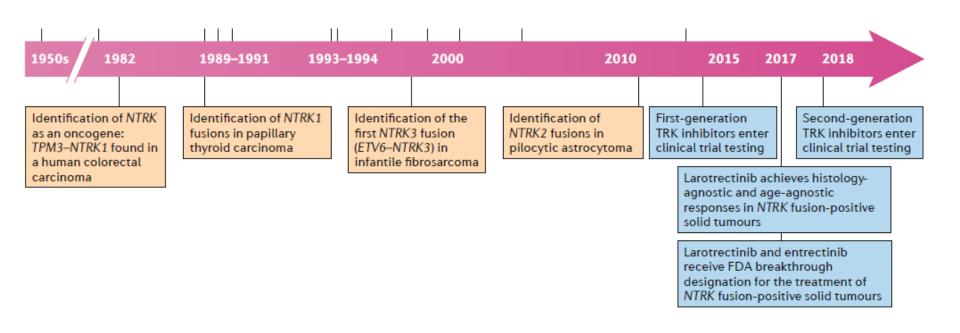
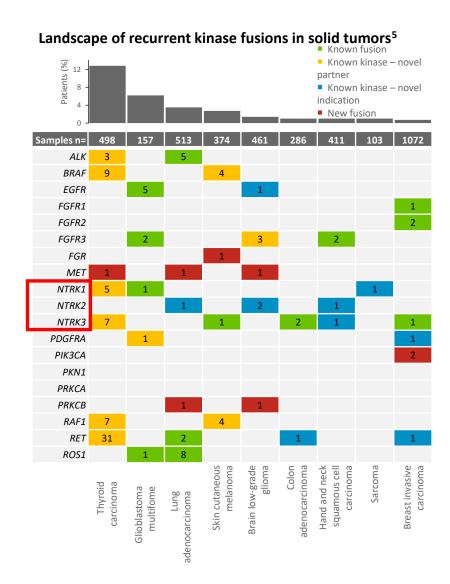


VSIMPOSIO 18/19 CETHI 18/19 noviembre de 2019

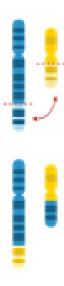
Ilustre Colegio Oficial de Médicos de Madrid. Aula Jiménez Díaz. Madrid


NTRK: ¿Qué alteraciones presentan y en qué tumores?

Dra. Lara Iglesias


Oncología Médica

HISTORY OF ONCOGENIC NTRK GENE FUSIONS


- Associated with a diverse range of solid tumors and hematologic malignancies^{1,2}
- Neurotrophic tyrosine receptor kinase (NTRK) gene fusions are associated with many human cancers
 - Associated with ≥19 tumor types^{2,3}
 - Implicated in up to 1% of all solid tumors⁴

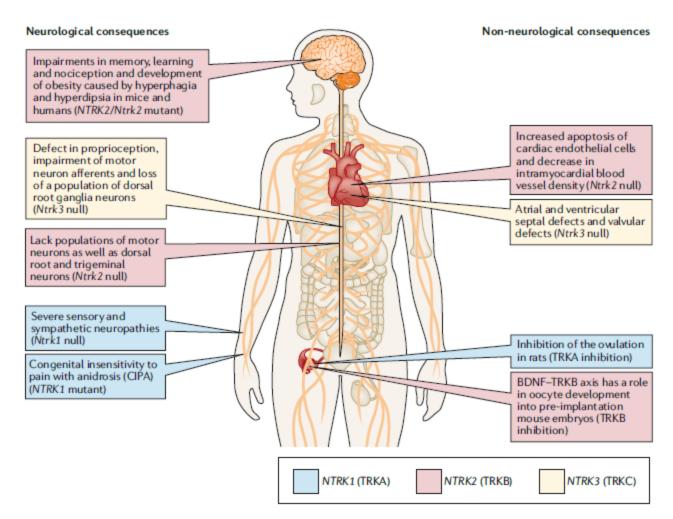
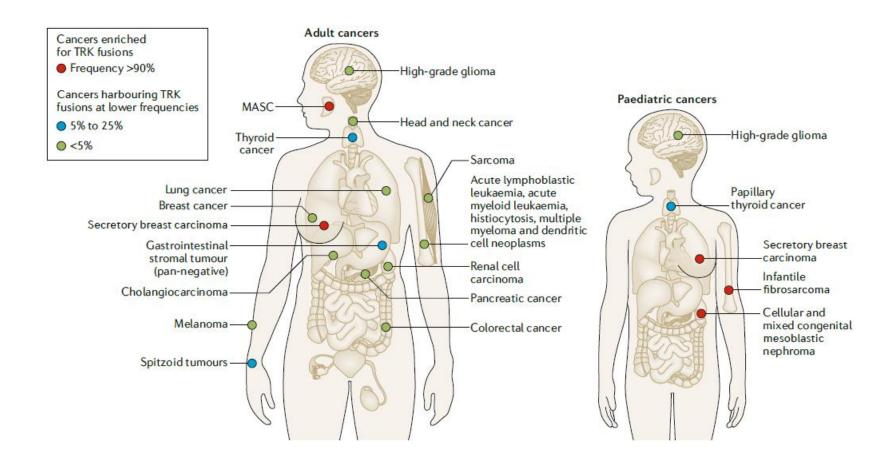
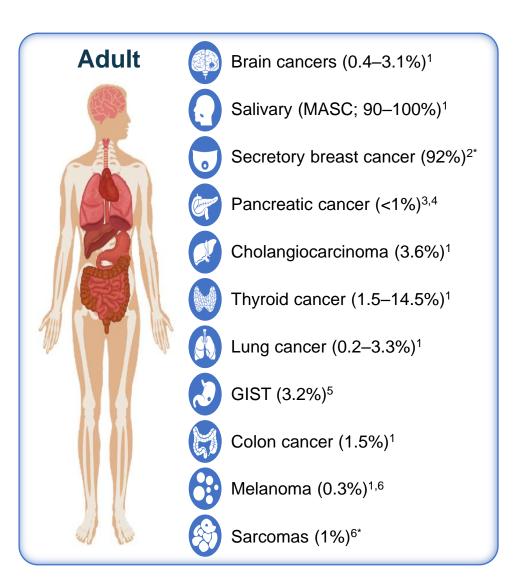
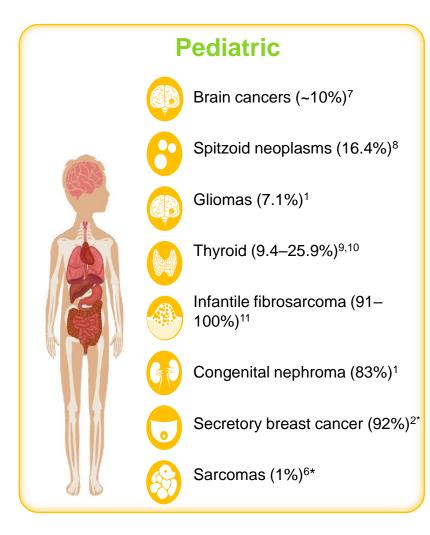
- 1. Khotskaya YB, et al. Pharmacol Ther. 2017;173:58-66
- 2. Vaishnavi A, et al. Cancer Discov. 2015;5:25-34.
- 3. Amatu A et al. ESMO Open. 2016;1:e000023.
- 4. Drilon A, et al. N Engl J Med. 2018;378:731-739.
- 5. Stransky N, et al. Nat Commun. 2014;5:846.

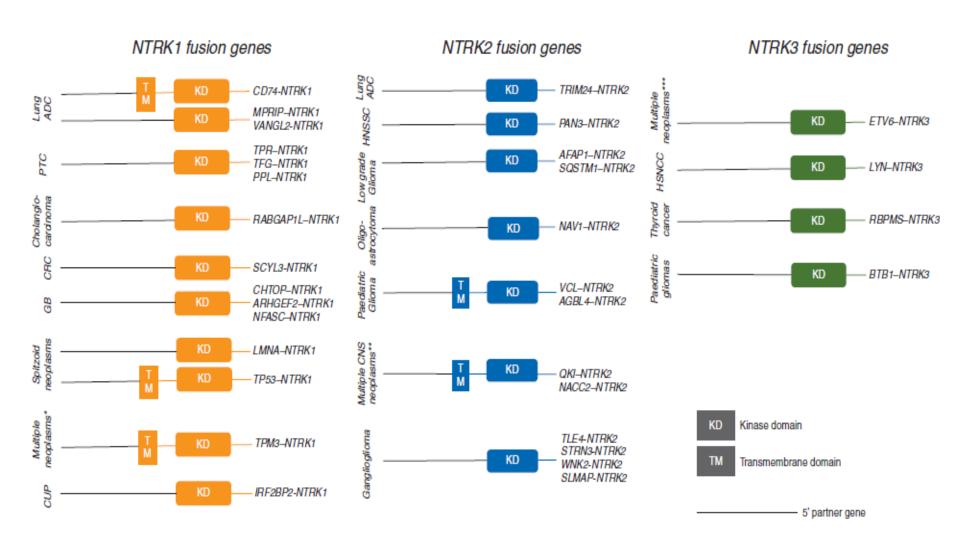
NTRK: Rearrangements/ fusions

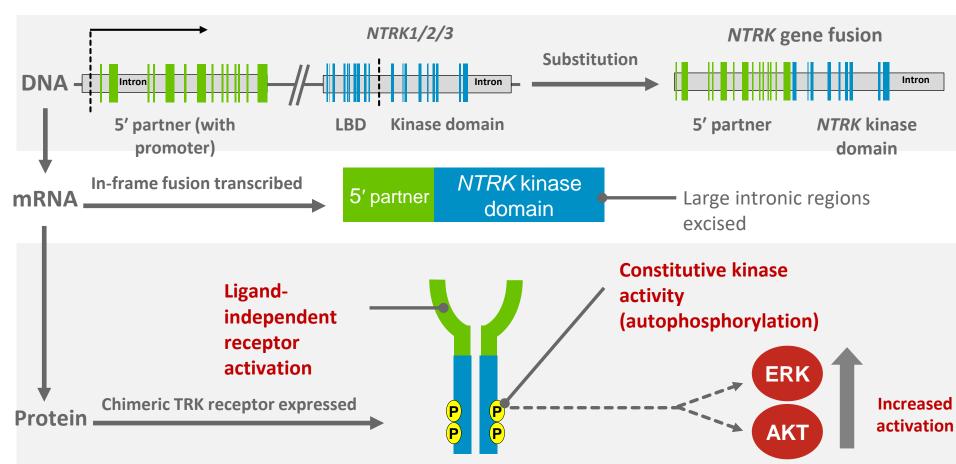
- Neurotrophic tyrosine receptor kinase (NTRK) gene fusions :
 - involving either NTRK1, NTRK2 or NTRK3
 - · (encoding the neurotrophin receptors
 - TRKA , TRKB and TRKC, respectively)

- Vaishnavi A, et al. Cancer Discov. 2015;5:25-34.
- Amatu A et al. ESMO Open. 2016;1:e000023.
- Drilon A, et al. N Engl J Med. 2018;378:731-739.
- Stransky N. et al. Nat Commun. 2014;5:846.

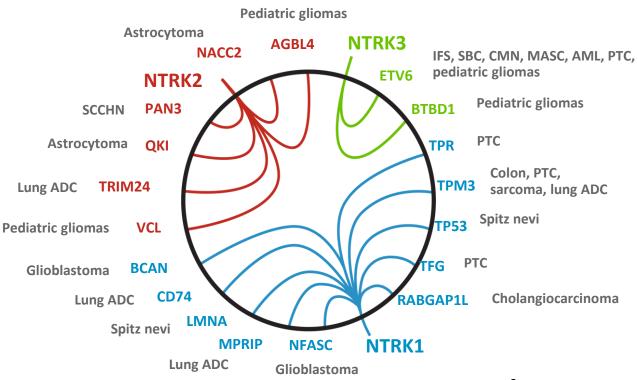
Tyrosine kinase domain of TrkA, TrkB, TrkC receptors¹ **Extracellular matrix TRKB TRKA** TRKC Cell membrane **TRK** Inhibition of downstream inhibitor pathways Cytoplasm (MAPK - PI3K/AKT) In-vitro/in-vivo Inhibition of Trk tumour growth Inhibition of phosphorylatio inhibition arrest cell and proliferation


Fig. 6 | Consequences of loss, decreased activity or inhibition of TRK. Genetic or pharmacological disruption of TRK



 *Frequency in adult vs. pediatric patients not specified;
 GIST, gastrointestinal stromal tumor;
 MASC, mammary analogue secretory carcinoma.



NRTK gene fusions are oncogenic – NOT SNVs, CNVs, alterations

AKT, protein kinase B; CNV, copy number variant; ERK, extracellular signal-regulated kinase; LBD, ligand-binding domain; SNV, single nucleotide variant.

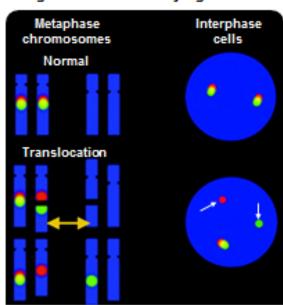
- 1. Amatu A, et al. ESMO Open. 2016;1:e000023.
- 2. Vaishnavi A, et al. Cancer Discov. 2015;5:25-34.
- 3. Hyman DM, et al. J Clin Oncol. 2017;35:LBA2501.

NTRK gene fusions occur in a tumor-agnostic manner with inconsistent break points and fusion

The optimal detection method requires no prior knowledge of fusion break points and/or fusion partner

prehensive NTRK

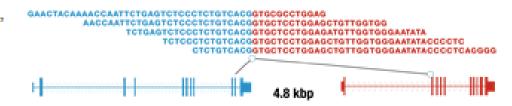
The Art of Identifying NTRK Gene Fusions Why Not RT-PCR?


- High sensitivity and specificity^{1,2}
- Widely available, low cost³
- Specific primer sets required for each fusion unknown fusions not detected 3-5
- Low-complexity, GC-rich sequences in NTRK genes limit useful primer selection and complicate reaction optimization⁶

The Art of Identifying NTRK Gene Fusions Why Not FISH?

- Novel fusion partners can be detected if break-apart probes used¹
- High sensitivity and specificity²
 - Requires individual probes for each NTRK gene (ie, three separate FISH analyses per patient sample)
 - Break-apart FISH identifies gene disruptions in DNA but cannot confirm in-frame, functional fusions

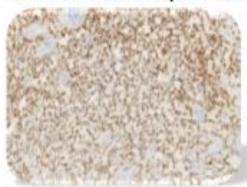
Yellow (red/green) signals in normal interphase nuclei versus split red and green signals in cell carrying translocation


The Art of Identifying NTRK Gene Fusions What Makes NGS Ideal?

General NGS

- High sensitivity and specificity potential
- Multiplexing: simultaneously queries multiple potentially actionable targets (eg, NTRK, ALK, ROS1, RET)
- Detects both known and novel fusions, regardless of break point or fusion partner (depending on library preparation method)

RNA-based NGS


- Able to distinguish in-frame, transcribed gene fusions versus out-of-frame fusions
- Avoids difficulties of sequencing large intronic regions in the NTRK genes

RNA-based NGS is the preferred method for detecting NTRK gene fusions in cancer

Pan-TRK IHC Detects Both Wild Type and Fusion TRK Protein

Fusion-driven TRK expression

Secretory carcinoma of salivary gland 95% of tumor cells staining ETV6-NTRK3 fusion detected by NGS

Wild type TRK expression

Gastrointestinal stromal tumor (GIST) 100% tumor cells staining No fusion detected by NGS

- 9% (n=324) of 3,574 tumors screened by pan-TRK IHC stained positive when defined as >1% of tumor cell staining (range: 0%-54% in gastric cancers and salivary gland cancers, respectively)
- Of the 324 IHC-positive tumors, 164 were confirmed by ISH and 12 fusions were detected
- The percentage of cases staining positive decreased to 5% (n=191) and 4% (n=133) if the definition of positive IHC was increased to >10% and >25% of cells staining, respectively
- At a cutoff of 25% of cells staining, two fusion-positive melanomas would have been missed

Confirmation of IHC-positive cases is REQUIRED

ISH, in allu hybridization

Feng J. et al. Poster presented at: ESWO Molecular Analysis for Personalized Therapy, 2015. Paris. France.

Diagnostic testing methods summary: Benefits and drawbacks

Method Method											
Benefits	Next-generation sequencing (NGS) Detection of novel fusion partners (depending on method)¹ Ability to interrogate multiple actionable targets simultaneously¹ Current NTRK testing conducted by NGS² Relevance of NGS increases as number of actionable targets grows High sensitivity and specificity potential³	Fluorescence in situ hybridization (FISH) Location of the target within the cell is visible ^{8,9} High sensitivity and specificity ⁹ Several fluorophores can be used at once to detect several targets in one sample ⁹	Polymerase chain reaction (PCR) # High sensitivity and specificity ^{11,12} # RT-PCR assays detect fusions expressed at the RNA level (also applies to RNA-based NGS) ¹² # Inexpensive ¹³	Pan-TRK immunohistochemistry (IHC) // Inexpensive ^{3,14} // Decentralized, available in most laboratories ¹¹ // Established reimbursement codes ¹⁵ // Turnaround time ~2 days ¹⁴							
Drawbacks	 Turnaround time: ~1-3 weeks Technically complex (high start-up cost)⁴ Requires specialty infrastructure⁵ Highly centralized testing model (academia and reference laboratories)¹ Reimbursement currently restricted (although developing)⁶ Sensitivity and specificity of NGS assays vary widely^{3,7} 	// Requires fluorescence microscopy ¹⁰ // Target sequence must be known (break-apart FISH may detect <i>NTRK</i> gene fusions with unknown partners, but both in-frame and out-of-frame fusions will be detected) ¹	Target sequences must be known (ie, cannot detect novel fusion partners) ^{1,13}	Detects both fusion and wild-type TRK expression ¹⁶ Scoring algorithms are not standardized ¹¹							

ESMO recommendations on the standard methods to detect *NTRK* fusions in daily practice and clinical research

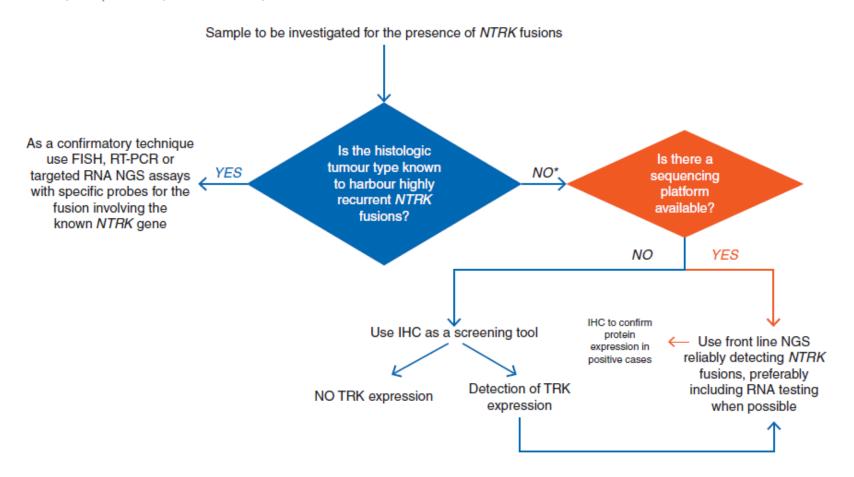
Annals of Oncology 30: 1417–1427, 2019 doi:10.1093/annonc/mdz204 Published online 3 July 2019

C. Marchiò ^{1,2}, M. Scaltriti^{3,4}, M. Ladanyi³, A. J. Iafrate^{5,6}, F. Bibeau⁷, M. Dietel⁸, J. F. Hechtman³, T. Troiani⁹, F. López-Rios¹⁰, J.-Y. Douillard¹¹, F. Andrè ^{12*} & J. S. Reis-Filho³

Table 1. Summary of main features, strengths and weaknesses of all available techniques to detect NTRK rearrangements

Method	Sensitivity	Specificity	Detection of all fusion genes	Detection of partner	Detection of expression	Screening
IHC	High ^a	High ^b	Yes	No	Yes	Yes
FISH ^c	High	High	One per probe	No	No	No
RNA seq NGS	High	High	Yes	Yes	Yes	Yes
DNA seq ^c	Moderate	High	Yes	Yes	No	Yes

^aFalse negatives reported mainly in NTRK3 fusions.


^cDetected rearrangements by DNA-based assays may not result in fusions, correlation with surgical pathology and predicted transcript (for sequencing) is needed.

^bIn the absence of smooth muscle/neuronal differentiation.

ESMO recommendations on the standard methods to detect *NTRK* fusions in daily practice and clinical research

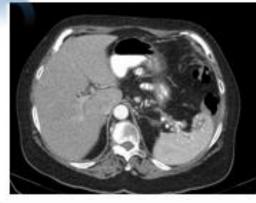
Annals of Oncology 30: 1417–1427, 2019 doi:10.1093/annonc/mdz204 Published online 3 July 2019

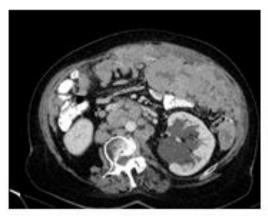
C. Marchiò ^{1,2}, M. Scaltriti^{3,4}, M. Ladanyi³, A. J. Iafrate ^{5,6}, F. Bibeau⁷, M. Dietel⁸, J. F. Hechtman³, T. Troiani⁹, F. López-Rios¹⁰, J.-Y. Douillard¹¹, F. Andrè ^{12*} & J. S. Reis-Filho³

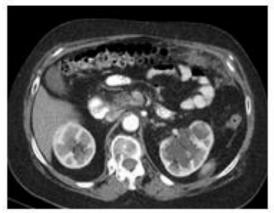
Testing for NTRK gene fusions is essential for identifying patients

NGS, PCR, and FISH can all identify NTRK gene fusions


IHC can be used as a screening tool, but results must be confirmed (preferably NGS)


NGS is a multiplex assay able to detect novel fusions and is available at several reference laboratories


Oct 2018 CT SCAN



Oct 2019 CT SCAN

VSIMPOSIO 18/19 CETHI 18/19 noviembre de 2019

Ilustre Colegio Oficial de Médicos de Madrid. Aula Jiménez Díaz. Madrid

GRACIAS

laraiglesias@hotmail.com